
NASA Contractor Report 185199

Z ±:1t,, •, " ""

tli -"_7

._2_zt cT..-_/2._.---

J_Y

Transient Finite Element

Computations on the
Transputer System

Patrick J. Smolinski

University of Pittsburgh

Pittsburgh, Pennsylvania

February 1990

Prepared for

Lewis Research Center

Under Grant NAG3-829

NationalAeronauticsand
SpaceAdministration

(NASA-CR-18_I_9) TRANSIENT
COMPUTATIQNS NN THE TRANSPUTER

Report (#ittsburgh Univ.) 37

FINITE ELEMENT

SYSTEM Final

p CSCL 20K

63/39

N90-18071

FOREWORD

The author would like to thank D. Janetzke and J. Kiraly of

the Structural Dynamics Branch of the NASA Lewis Research Center

for their helpful discussions and assistance in the use of the

Transputer system.

TABLE OF CONTENTS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

SUMMARY .. 1

INTRODUCTION 2

GOVERNING EQUATIONS 4

INTEGRATION ALGORTIHM 5

PARALLEL IMPLEMENTATION 8

NUMERICAL EXAMPLES ii

CONCLUSIONS 17

REFERENCES .. 19

IHilECEDING PAGE BLANK NOT FILMED

111

SUMMARY

The aim of this project was to study the solution of transient

finite element problems on the Transputer system of parallel

processors. The central difference time integration rule was

used so that no equation solving was necessary. Also

investigated was subcycling time integration which uses different

time steps in different subdomains of the finite element mesh.

A one dimensional bar problem was analyzed using the parallel

time integration algorithm. This involves subdividing the bar

into subproblems which are assigned to different processors.

Results show that the significant speed-up can be obtained

through parallel processing. Also subcycling can give an

additional speed-up in certain classes of problems. A two-

dimensional problem was also examined to evaluate the effect of

the communication to computation ratio on solution time.

i. INTRODUCTION

Even with the impressive speed of the current generation of

computers many problems in computational mechanics still remain

untractable. For instance, problems involving nonlinear three-

dimensional transient analysis or multidisciplinary optimization

problems represent such tremendous computational burdens that

they cannot be readily solved with even today's supercomputers.

In an effort to create substantially faster computers attention

has focused on the development of multiprocessor or parallel

computers and to date several models are already being marketed.

However, to fully exploit the potential of these new machines

special algorithms must be developed which are amenable to this

type of computing [i].

In this regard, explicit time integration offers advantages

for the solution of transient finite element equations because of

the fact that it does not require the solution of a set of

equations to perform the update. For this reason it can be

easily parallelized, by partitioning the nodes of the mesh into

groups which are to be updated concurrently over a time step.

However, the major disadvantage of explicit integration is that

it is only conditionally stable and the time step must be less

than a critical value for a meaningful solution. This restriction

can impose an excessive number of time steps in some problems.

It should be noted, however, that in certain classes of problems

unconditionally stable methods can require as small a time step

as explicit methods in order to achieve sufficient accuracy [2].

One way that has been devised to partially overcome this difficulty

is through the use of subcyc!ing [3-5].

2

Subcycling involves the use of different time steps in

different subdomains of the mesh. In this way a group of small

or stiff elements which normally impose a small time step on the

entire mesh can be integrated with a small time step while the

remainder of the mesh is updated with a larger time step.

Subcycling methods have been used for both heat conduction [5]

and structural dynamics problems [4] and also with implicit

integration schemes [3].

Currently most of the work done on parallel computers for

the analysis of finite element problems has been conducted on

shared memory machines which contain a small number of large

scale processors [6]. These types of parallel computers are

often referred to as "coarse grained computers". With shared

memory computers all processors have access to all the data

stored in memory which simplifies the programming. However,

memory contention problems can develop when several processors

try to access the same data simultaneously. The other approach

to parallel computations is the so called "fine grained" machines

which are composed of many small processors each having some memory.

An example of this is the hypercube machine which has been used

by several investigators for the solution of structural mechanics

problems [7,8]. Presented in this paper are the details and results

of implementing a standard explicit time integration program and

explicit subcycling program on a system of transputer processors

[9]. The transputer is a small chip level processor with local

memory that can be linked to other transputers to form a system

and interfaced with a personal computer. The modularity of the

processors allows the system to be easily expanded and the

configuration of the processors may bechanged to suit different

classes of problems.

To evaluate the efficiency of the program a simple structural

dynamics problem has been considered with different combinations

of mesh sizes, number of time steps, and number of processors.

Also a comparison is made between standard and subcycling time

integration methods.

2. GOVERNING EQUATIONS

The finite element equilibrium equations governing structural

dynamics problems in which damping is negligable are given by

Md + f = F (i)

where M is the mass matrix, which is assumed to be lumped, d is

the vector of nodal displacements, and f and F are the nodal

vectors of internal and external forces, respectively.

Superposed dots are used to represent time derivatives. For the

case of linear systems, the internal forces are directly related

to the nodal displacements and Eq. (i) can be written as

Md + Kd = F (2)

where K is the stiffness matrix. The matrices K and M are

symmetric with M being positive definite and K being positive

semidefinite. The initial value problem consists of solving

either equation (i) or (2) for d=d(t) subject to the initial

conditions

4

.0
(3a)i

d(t=0) = d

0

d(t=0) = d (3b)

for all time, t>O.

3. INTEGRATION ALGORITHM

Perhaps the simplest method of solving the governing equation

is the central difference time integration rule which in the

asynchronized form is

_n+i/2 = _n-i/2 + Atin (4a)

dn+l = d n + Atd n+I/2 (4b)

where At is the time step and superscripts are used to indicate

the time, for example dn = d(nAt). This rule is referred to as

an explicit method since no equations need be solved to update

the solution if the mass matrix is diagonal. It is well known

that the central difference method is only conditionally stable

and that the time step must satisfy

2
At < (5a)

- _max

where _max is the maximum frequency given by the eigenvalue

problem

Kx = _2Mx (5b)

A more conservative and easily computed criterion [2] is that

2
At _ e (6a)

max

where _emax is the maximum frequency of the elemental eigenvalue

problem

Kexe = _e2Mex e
(6b)

This time step restriction can preclude the use of the central

difference method in certain problems. For instance, in structural

dynamics problems where the low frequency modes dominate the

response, the critical time step is too restrictive and accurate

results can be obtained by using an unconditionally stable

integration method with a much larger time step. A discussion of

stability and accuracy characteristics of different integration

schemes and problem applications can be found in [2].

In an effort to overcome this difficulty, subcycling time

integration methods [4] have been proposed. With subcycling

different time steps are used in updating different subdomains of

the mesh. In this way problems with locally applied loads or

problems where a group of stiff elements impose a small time

step, can be integrated using a small time step in the critical

region while the remainder of the mesh is updated with a much

larger time step. While stability proofs exist for various

subcycling schemes for the diffusion equation [3,5], to the

author's knowledge a rigorous proof for hyperbolic equations has

not been shown. However, a nodal interpolation method as

proposed in [i0] has given good results in many problems and has

not displayed any signs of instability when used with the standard

stability criterion, equations (6). To illustrate the method

with a two subdomain problem consider the vector of nodal

displacements partitioned in the form

(7)

where the nodal A and B are integrated with the time steps At and

mat, respectively and m is the integer time step ratio. For this

purpose, equations (4) are rewritten in the form

where

_n+i/2 = _n-i/2 + Atwin (8a)

d n+l = dn + _t_n+I/2 (8b)

[,o]W = _ if mod (n,m) = 0 (9a)

[ii]othwi (9b)

In the above equations _ is the unit matrix and the W matrices

are partitioned similar to d. In this scheme a total cycle,

which advances the solution from t to t + mat, consists of one

update using equations (8) and (9a) and m-i subcycles using

equations (8) and (9b). Shown in Fig. 1 is the flow of information

in a one dimensional problem with m=4. This figure illustrates

that the intermediate values of the displacement for the nodes

integrated with the large time step are calculated using linear

interpolation. Although analytical stability criterion have not

yet been derived for this subcyc!ing method, equation (6a) is

used in determining the appropriate time step for a node. The

critical time step for a node is defined as the minimum critical

time step among all the elements connected to the node. This

procedure allows the nodal time steps to be easily chosen for

practical problems and hasnot given rise to any instabilities.

It should be pointed out that subcycling can be easily

implemented into a standard explicit program with little change

to coding. However, several additional arrays are needed. One

array is required to keep track of time step size for each node

and an array is necessary for each nodal group. The nodal group

arrays contain the numbers of the elements attached to the nodes

in the group. These arrays give the elements to use when computing

the internal forces for a nodal group. A flowchart for the

subcycling algorithm is given in Table I.

4. PARALLEL IMPLEMENTATION

The basic structure of explicit time integration allows the

displacement at a node to be updated independently of other nodes

over a time step. Information from other nodes enter into the

calculation only through historical terms. This fact allows the

nodes of the mesh to be partitioned into subdomains which can be

updated by different processors with information being exchanged

after every time step. In order to minimize the amount of data

that must be exchanged, the nodal groups should be composed of

contiguous nodes. This way only the displacements from the

boundary of the subdomain must be transferred. This concept is

illustrated for a one-dimensional bar in Fig. 2.

The parallel computer used in this study is a Multiple-

Instruction Multiple-Data(MIMD) machine composed of a system of

8

transputer processors. Each transputer processor is a VLSI

design which contains an INMOS processor, on chip memory, and

four bidirectional communication links. Since each processor has

only local memory, data to be shared between processors must be

explicitly transmitted across the communication channels. The

communication links are self synchronizing so that if one

processor transmits data to another it must wait until the data

is received by the other processor. Also a processor waiting to

receive data must wait until it is transmitted before it can

continue computing. The four links can simultaneously transmit

data at a rate of 10 MBit per second wish about a 2U sec. start

up time.

In this study two different types of transputers were used.

The INMOS T414 and has 2 KBytes of local memory and a floating

point performance of about 0.i MFLOPS while the INMOS T800 has 4

KByzes of memory and is capble of about 1.2 MFLOPS. Although the

processors may be assembled in a number of configuations, for

example a torus, a 2-D mesh, or a hypercube, a pipeline

configuration, Fig. 3, was chosen to simplify the programming of

interprocessor communication. The computer programs were written

using the occam language [ii] which is specifically designed for

the transputer and for the programming of interprocessor

communication and parallel algorithms.

The computer system is composed of two types of processors.

The transputer development system (TDS) processor is housed inside

the personal computer and acts as an interface with the PC and is

also used to edit, compile, and distribute the occam programs to

the external processors. The external processors are used for

computations alone.

In the explicit time integration scheme, the TDS processor

serves as a manager of the system of external processors. At the

start of the program, the master defines the problem parameters,

such as the nodal and element data, assigns the nodes to

processors, and transmits this information to the external

processors. Once all the external processors have received and

stored the appropriate data for its nodal group, the update

process is iterated for the number of time steps. After each

time step the updated displacement data on the boundary of each

nodal subdomain is exchanged with the neighboring processors.

If subcycling is used, the basic structure of the parallel

algorithm does not change. However, the standard explicit update

is replaced by the subcycling scheme discussed in the previous

section. The simplest case of subcycling is when nodes having

the same time step are assigned to a processor. Then no

additional arrays are needed and the time step counter may be

used to determine when it is necessary to compute the acceleration.

A two-dimensional explicit algorithm was also developed in

order to examine the efficiency of parallel processing when applied

to more complicated problems. As opposed to the one-dimensional

program which uses a pipeline processor configuration, the two-

dimensional program can use arbitrary processor configurations,

however, the nodes of the finite element mesh must communicate.

For instance, the three nodes of an element must either be assigned

to one processor or neighboring processors. The restriction of

]0

nearest neighbor communication is made in an effort to conserve

the limited amount of processor memory and also to limit the

amount of interprocessor communication which significantly

increases the running time.

The structure of the two-dimensional program is similar to

the one-dimensional version with the master processor transmitting

the data of the problem to the system. _owever, in this case it

also transmits information on the processor connections so that

each processor can determine to how many and to which processors

it is connected. After all the problem and connection data has

been transmitted, each processor communicates with its neighbors

to determine the nodal displacements it must send and receive

from each neighbor after every time step. Once this information

has been found, the time stepping procedures begin with each

processor updating its assigned nodes. After each time step the

appropriated nodal displacement information is exchanged between

processors. The procedure continues until the solution has been

computed for the time period of interest. A flowchart for the

algorithm is given in Fig. 8.

5. NUMERICAL EXAMPLES

In many cases a paralled processing algorithm is evaluated

by comparing the solution times for a problem of a fixed size

solved on a single processor and on a multiprocessor system.

However, it is arguable [8] that in general problem size expands

to fill the available computing resources and that governing

factor is the solution time not the problem size. For this

11

reason a more appropriate test is how large a problem can be

solved in a given time. This can be examined by choosing a

variable size problem the amount of processor work

remains fixed while the number of processors is increased.

With this in mind, the test problem that has been chosen is

a one-dimensional bar composed of linear displacement elements

that is fixed at one end and given an initial displacement at the

other end. The parameters that were varied were the number of

nodes in the mesh, the number of time steps, and the number of

processors used to solve the problem. The solution times using

explicit integration for three different problem families, i0

elements per processor, 100 elements per processor, and 400

elements per processor, are given in Figs. 4, 5, 6, respectively.

Several conclusions can be drawn from the solution times for

these various problems. If only one time step is run the solution

time is greater for greater numbers of processors. This is because

the problems with more processors have more elements and the data

takes longer to set-up and distribute among the processors. This

set-up and distribution time is a significant portion of the total

solution time if one time step is computed. As the number of

time steps increases, the proportion of time used in setting up

the problem diminishes and the solution times for different numbers

of processors converges. Another point is that if the average

times for the 10 element per processor and 100 element per

processor problems for I0000 time steps are compared on a per

element basis, the larger problem is faster. This is due to the

fact that the limiting factor in the smaller problem is the

]2

interprocessor communication after each time step and not the

element computations.

The second problem that has been investigated is the

subcycling time integration of a one-dimensional bar composed of

different element sizes, Fig. 7. Since the material properties

have been chosen so that the wave speed of the material is C = i,

the critical time step for standard explicit integration is At =

0.1. First however, to illustrate the accuracy of the subcycling

algorithm a smaller bar problem with 100 elements of length L =

1.0, 100 elements of length L = 0.1, and 100 elements of length L

= 1.0 with an applied compressive stress, Fig. 7, has been

analyzed. A time step of 10At was used for the nodes connecting

two large elements and a time step of At for the remaining nodes

with At = 0.095. The stress history for subcycling and explicit

time integration at various points in the bar is also given in

Fig. 7.

The larger problem was run on the transputer system with

different numbers of processors and the solution times are given

in table 2. Note that these times should not be directly compared

with the times from the first example since a T800 TDS processor

was used in this example and a T414 TDS processor was used in the

first problem. For this subcycling problem all the nodes that

are assigned to a processor are updated with the same time step.

This simplifies the programming and saves memory, but is not

necessary. In all cases, the group of nodes with the small time

step were assigned to one processor, while the remaining nodes

were divided among the other processors. Even though the

]3

subcycling was approximately three to four times as fast as the

explicit integration for a given number of processors, this

speed-up is not as great as might be expected on a sequential

computer. One reason for this is that balancing the work load

among the processors is more difficult since two types of updates

are involved. For example, if the difference in time steps is

large, the majority of updates are the subcycles of the region of

small elements. During the subcycle, the displacement of the

nodes being integrated with the large time step is incremented

with a fixed value. This can be computed very quickly. However,

the update of the region of small elements takes longer because

the internal forces must be computed, which delays the overall

time step. Assigning more processors to update these nodes would

not necessarily speed-up the computation, since the increase in

communication time would probably offset any gain in computation

time because this is such a small group of nodes. Alternatively,

using more processors to update the large time step nodes does

reduce the solution time up to a point, however, as with any

fixed size problem the communication computation ratio increases

which leads to diminishing returns.

The simple two-dimensional test problem chosen for study is

a rectangular plate which is fixed at one end and has an applied

load at the other end as shown in Fig. 9. The plate was

partitioned equally by vertical lines and the nodes of the

different partitions were assigned to different processors as in

Fig. 9. The test problem was chosen so that the effect of

varying the computation to communication ratio on the efficiency

]4

of the parallel algorithm could be examined. For this reason,

the size and geometry of the problem were varied by changing the

number of nodes in the x and y directions. For example, the

notation 20x10 indicates that the plate is divided so that there

are rows of 20 nodes, in the x direction (nsegx=20) and rows of

10 nodes in the y direction (nesgy=10). In this case the total

number of nodes in the problem would be 200 (nsegx*nesgy). The

number of nodes assigned to each processor is the total number of

nodes in the problem divided by the number of processors. The

effect of changing the number of nodes in the x and y directions

is to alter the ratio of computation to communication for each

processor. The amount of processor computation is proportional

to the total number of nodes while the amount of communication is

proportional to only the number of nodes in the y direction since

the problem is partitioned vertically. The three node triangle

element was used in this study because of its simplicity.

The results for the first series of test problems for

various numbers of time steps are given in table 3. Here two

processors were used and the problems have 100, 200, and 400 nodes,

respectively. Again, similar to the one-dimensional problem, it

can be seen from the data that once a minimum number of time steps

are run to overcome the initial parallel overhead, the solution

time is proportional to the number of time steps.

In the second problem the problem size was varied along with

the number of processors so that the number of nodes per processor

was kept fixed at 50. If the parallel algorithm were perfectly

efficient the solution times for all three cases would be equal.

]5

From table 4 it is noted that the solution times become closed as

the number of time steps is increased and the four and eight

processor problems are quite close for 1000 time steps. It

should be mentioned, however, that perfect efficiency can never

be achieved since the parallel program requires interprocessor

communication which entails additional work.

The third problem investigates how the solution time varies

as the amount of interprocessor communication is increased. This

is done by keeping the number of nodes per processor, and

therefore computational load, fixed while varying the numbers of

nodes in the x and y directions. By the way the nodes of the

problem are partitioned, the amount of interprocessor

communication is proportional to length of the problem in the y

direction which is i0, 20, 40, and 80 for the four cases

considered. As can be seen from the data in table 5 the solution

time increases with increasing amounts of interprocessor

communication. However, the solution time is not proportional to

the amount of interprocessor communication. Comparing the

solution times for 1000 time steps, there is only a slight

increase as the amont of communication is doubled. One reason

for this is that the total solution time is composed of

communication time and computation time and in this problem the

computation time is kept fixed. Secondly, when communication

takes place between processors, a significant amount of time is

necessary to set up the exchange regardless of the amount of data

that is transferred.

In summary, the explicit structure of the central difference

time integration method is well suited to parallel processing

]6

because of the ease of load balancing and the minimal

communication requirements. However, to use the parallel

processor most efficiently the problems to be analyzed should be

large enough and structured so that processor communication time

to computation time is minimized. Subcycling can be used to

minimize the drawback of conditional stability in certain

problems with nonuniform meshes. Although load balancing is more

difficult with subcycling, substantial speed-ups over single time

step explicit integration can still be achieved.

6. CONCLUSIONS

The aim of this project was to provide an introductory study

of the use of a transputer processor system in the solution of

transient finite element problems. The central difference time

integration method was used since it is well suited to parallel

processing because of its explicit nature which requires no

equation solving. Moreover, the subcycling form of the central

difference method can be used to minimize the drawback of

conditional stability in problems with nonuniform finite element

meshes. These methods have been implemented on a transputer

system of processors for both one and two dimensional test

problems.

The results of the test problems have shown that to use the

parallel processing environment most effectively the problems to

be analyzed should be large enough and structured so that the

processor communication time to computation time is minimized.

For one dimensional problems this is easily accomplishe_ by

]7

increasing the size of the mesh. However, large scale one

dimensional problems are of limited practical value. For two

dimensional problems the amount of interprocessor communication

is proportional to the number of nodes on the boundary of the

spatial domain assigned to a processor, while the amount of

computation is proportional to the total number of nodes. If

this spatial domain can be roughly approximated by a square, the

amount of communication is proportional to the length of a

side while the amount of computation is proportional to the

square of the length. For this reason, at least in theory, the

size of a problem can be increased so that the amount of

computation is much greater than the amount of communication at

which point it becomes faster to solve the problem on a multi-

processor computer. However, in practice the amount of local

memory on the transputer is limited so that this point may not be

obtainable.

Some of the key questions to be investigated in the future

for multi-dimensional problems are: (i) Given the geometry of

the problem, how to partition the problem for processor assignment

and what is the best processor configuration to minimize the

communication. (2) _ow many processors should be used to solve a

particular problem. With parallel processing, as with all

computational methods, the ultimate goal is to minimize the

solution time for a problem. For small problems this may mean

the use of only one processor of a system leaving the other

processors idle. For this reason, any comparisons between

methods should be made on the basis of solution time not

efficiency.

]8

7. REFERENCES

I •

•

•

•

•

•

•

e

•

i0.

ii.

M. Ortiz, B. Nour-Omid, and E. Sotelino, "Accuracy of a

Class of Concurrent Algorithms, for Transient Finite Element

Analysis," Int. J. Numer. Methods Eng., 26(2), 379-391,
(1988).

T. Belytschko and T.J.R. Hughes, Eds. Computational Methods

for Transient Analysis, North-Holland, Amsterdam, 1983.

T. Belytschko, P. Smolinski, and W.K. Liu, "Stability of

Multi-Time Step Partitioned Integrators for First Order

Finite Element Systems," Comp. Meth. Appl. Eng., 49(3), 281-
297, (1985)•

T. Belytschko, H.J. Yen, and R. Mullen, "Mixed Methods for

Time Integration," Comp. Methods Appl. Mech. Eng., 17/18,
259-275, 1979.

P. Smolinski, T. Belytschko, and M. Neal, "Multi-Time-Step
Integration Using Nodal Partitioning," Int. J. Numer.

Methods Eng., 26(2), 349-359, (1988).

T. Belytschko and N. Gi!bertson, "Conculrent and Vectorized

Mixed Time, Explicit Nonlinear Structur_l Dynamics Algorithms"
in: Parallel Computations and Their Imp6ct on Mechanics, ed.

A.K. Noor, AMD-Vol. 86, 279-287, (1987).

B. Nour-Omid and K.C. Park, "Solving Structural Mechanics

Problems on the Caltech HYPERCUBE Machine," Comp. Methods
Appl. Mech. Eng., 61, 161-176, (1987).

J.L. Gustafson, G.R. Montry, and R.E. Benner, "Development

of Parallel Methods for a 1024-Processor HYPERCUBE," SIAM

Journal on Scientific and Statistical Computing, 9(4),
(i988).

Transputer Reference Manual, INMOS Corporation, Color_do
Springs, 1986.

T. Belytschko, "Partitioned and Adaptive Algorithms for
Explicit Time Integration," in: Nonlinear Finite Element

Analysis in Structural Mechanics, by W. Wunderlich et.al.,

eds, (Springer, Berlin, 1981), 572-584.

C.A.R. Hoare, Ed. OCCAM 2 Reference Manual, Prentice Hall

International Series in Computer Science, Prentice Hall, New
York, 1988.

]9

Table I. Flow chart for nodal subcycling method.

0.)

i.)

2.)

Given d0and v0; Set t=0 and n=0

Compute

LOOP i = 1 to number nodal groups

2a.) If mod (n/mi) = 0 then

2b.) Compute f_ and F _~ _i for nodal group i

3.)

= F n n2c.) Compute a n M[l(.l - fi)

2d.) Update n+i/2 = vn-i/2+ AtWa i

Update dn+l = dn + At vn+i/2

Set n = n + 1 and t = t + At

if t < t max go to 2; otherwise stop

20

Table 2. Parallel solution time for subcycling and explicit time
integration.

Number of

Processors

3

9

13

17

19

21

25

Solution Time (sec.)

Subcycling

77.83

19.53

12.83

9.91

9.14

8.60

7.93

Explicit

227.01

76.40

51.24

39.59

35.63

32.73

27.42

2]

Table 3

Parallel Solution Time for Two-dimensional Problems

Using Two Processors

number o£

±Ime steps

1

10

100

1000

±line(see,)

I0 x I0 20 x I0 40 x tO

problem problem problem

0.3 1,0 1.8

0.6 1.7 5.0

4.0 8.4 18.5

37.4 75,2 153.5

22

Table 4

Solution Times for Two-dimensional Problems for Various
Numbers of Processors Where the Number of Nodes Per

Processor is Fixed

I

i0

I00

i000

2 processors
•10 x 10

probtem

tlme<sec.)

4 processors
20 x 10

probtem

8 processors
40 x I0

probtem

0.30

0.G4

3,98

37,44

0.58

0.99

5.06

45.78

1.02

1.43

5.50

46,29

23

Table 5

Solution Times Using Eight Processors for Problems with

Different Numbers of Nodes in the x and y Direction

I

I0

100

1000

%Ine(sec.)

80 x 10 40 x 20 20 x 40 10 x 80

prob[em problem problem probtem

3,28 3.83 4.96 7,54

4.02 4,68 5.99 8,92

11,44 13,23 16,33 22,69

85.64 98,73 119.71 160.37

24

0 updated value

±

t
n+4

n

X interpoloted value

Figure I. Flow of information in a one-dimensional problem.

25

initiol displocemen(

l lli IiIIJllJ_JIllJll

processor] processor 2 processor n

Figure 2.
Bar partitioned into nodal groups.

26

0 Hos't processor

O Po r"e, llel processor"

Co_un;Co _lon llnk

Figure 3. A pipeline processor confiouration.

27

10 ELEMENTS PER PROCESSOR

10

¢,}
O

v

LU

I.-
.1

----o---.- 1PRC_
- ;. 4 PROC
----o----- 8 PROC

16 PROC
32 PROC

---o--- 40 PROC

.01
.I I 10 100 1000 10000 100000

NUMBER OF TIME STEPS

Figure 4, Solution times for IO eIemeuts oer processor.

28

100 ELEMENTS PER PROCESSOR

100

O
uJ
03
LU
=!

I--

10

It

.1

.1 1 10 100 1000 10000 100000

1 PROC
---e---- 4 PROC
---o--- 8 PROC

16 PRO(3
---m--- 32 PROC
----o---- 40 PROC

NUMBER OF TIME STEPS

Figure 5. Solution times for tO0 elements per processor.

29

400 ELEMENTS PER PROCESSOR

LU

=E
E

I--

1000

100

10

• _ls..w_ • ..|.._| . | l|l.l| _ ! w..._| • .vv,w_| • . * .i

1 10 1O0 1000 10000 100000

1 PROC
----t--- 4 PROC

8 PROC
16 PROC
32 PROC

-----o--- 40 PROC

NUMBER OF TIME STEPS

Figure 6. Solution times for 400 elements per processor.

3O

lO0 elements

L=O.I

tO0 etements

L=LO

/

>

o"

STANDARD EXPLICIT

+ X=¢5.5

0 X=10_.5

X=155.5

I
t _ J

0.0 II:_._

Figure 7.

' I

SUBCYCLZNG

?
+ X=45.5

o X=IOA.5

X=t55.5

o.

o

.o 3oo.0 40.o e.o ioo._ 2_o.o _o'o.o _o.o?[M£
[INF-

._roblem statement and stress history for explicit and

subcycling time inteqrat_on.

31

MASTER PROCESSOR

Set probolem parameters

node. vq dO,At, NSTEP

information

Transmit connectivity information

Transmit problem parameters

SYSTEM PROCESSOR

Receive and send
processor connectivity data

Determine neighboring processors

receive and send

Store appropriate problem data

Determine data to be exchanged
with neighboring processors

Compute mass matrix

Loop over time steps
I = i to NSTEP

Update a. X and d
for assigned nodes

Exchange nodal displacement data
with neighboring processors

Receive stop If I = NSTEP send stop signal

Fig. 8. Flow Chart for two-dimensional finite element example.

32

J
I
i
J

/
i
J

processor I -J

/

>
4 4
>

Z
I

processor 2

/

>

i

'-- applied toad

L processor 3

Fig. 9. Problem statement for two-dimensional finite element

example.

33

Report Documentation PageNational Aeronautics and
Space Administration

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-185199

5, Report Date4. Title and Subtitle

Transient Finite Element Computations on the Transputer System

7. Author(s)

Patrick J. Smolinski

9. Performing Organization Name and Address

University of Pittsburgh

Department of Mechanical Engineering

Pittsburgh, Pennsylvania 15261

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

February 1990

6. Performing Organization Code

8. Performing Organization Report No.

None

10. Work Unit No.

505-63-1B

11. Contract or Grant No.

NAG3-829

13. Type of Report and Period Covered

Contractor Report
Final

14. Sponsoring Agency Code

15. Supplementary Notes

Project Manager, David C. Janetzke, Structures Division, NASA Lewis Research Center.

16. Abstract

The aim of this project was to study the solution of transient finite element problems on the Transputer system of

parallel processors. The central difference time integration rule was used so that no equation solving was necessary.
Also investigated was subcycling time integration which uses different time steps in different subdomains of the

finite element mesh. A one-dimensional bar problem was analyzed using the parallel time integration algorithm.

This involves subdividing the bar into subproblems which are assigned to different processors. Results show that

the significant speed-up can be obtained through parallel processing. Also subcycling can give an additional
speed-up in certain classes of problems. A two-dimensional problem was also examined to evaluate the effect of

the communication to computation ratio on solution time.

tT. Key Words (Suggested by Author(s))

Finite element; Subcycling; Structural dynamics;

Parallel computation; Transputers

18. Distribution Statement

Unclassified- Unlimited

Subject Category 39

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages

Unclassified Unclassified 37

NASAFORM1626OCT86 *For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Price*

A03

